


## Problem I Paths in a Tree

You are given a tree (a connected graph with no cycles), and the edges of the tree which are for some reason directed; your task is to add **minimum** number of special paths in the tree such that it's possible to go from any node to another. The rules for the special paths are noted below:

- 1. A special path consists of some continuous edges (from the tree) and nodes.
- 2. In a special path, the edges should be in opposite directions as they are in the tree.
- 3. A node or an edge can be visited at most once in a special path.
- 4. Multiple special paths may have common nodes or edges.

For example, in the picture below, a tree is drawn, the black arrows represent the edges and their directions, circles represent nodes. Then we need two special paths. One path is 2-1-0 (green arrow), another is 3-1 (blue arrow). Instead of the path 3-1 we can add 3-1-0. You cannot add a path like 1-3 or 0-1-2 because of rule 2. You cannot add 0-2 or 2-3-0 because of rule 1.



## Input

Input starts with an integer T ( $\leq 30$ ), denoting the number of test cases.

Each case starts with a line containing an integer N ( $2 \le N \le 20000$ ), where N denotes the number of nodes. The nodes are numbered from 0 to N-1. Each of the next N-1 lines contains two integers  $u v (0 \le u, v \le N, u \ne v)$  meaning that there is an edge from u to v.

## Output

For each case, print the case number and the minimum number of special paths required such that it's possible to go from any node to another.

| Sample Input | Sample Output          |
|--------------|------------------------|
| 2            | Case 1: 2              |
| 4            | Case 1: 2<br>Case 2: 3 |
| 0 1          |                        |
| 1 2          |                        |
| 1 3          |                        |
| 5            |                        |
| 0 1          |                        |