Easy Generating Function

Description

Here's a cool generating function f(n) = g(1, 2, ..., n), where g is a join function that simply concatenate all its arguments into a single string. For example, f(14) = g(1, 2, ..., 14) = 1234567891011121314.

What? You say the function f is not cool? No problem, we are considering a much cooler generating function X(n)which is related to f(n). The steps of X are as following:

- 1. Pick up a positive number n and write down f(n) where the length of f(n) should be even.
- 2. Convert the digit string to consecutive pairs P_k , where $P_k = (f(n)_{2k}, f(n)_{2k+1})$.
- 3. Consider for each pair $P_k = (a, b)$, write down b on the paper in a times.
- 4. Magic! The string on the paper is the output of X(n).

For example, X(2) = 2, X(4) = 2444, X(8) = 244466666888888888.

Now Eddy picks two integers n, m. Can you tell him what the *m*-th digit in X(n) is?

Input

The first line contains a integer T indicating the total number of test cases. Each test case contains two integers n, m in one line. It's guaranteed that the length of f(n) is even.

- $1 \le T \le 100000$
- $1 \le n \le 100000$
- $1 \le m \le 1200000$

Output

For each test case, print the *m*-th digit in X(n) in one line. If the *m*-th digit is not exist, please output -1.

Sample Input

6	2
2 1	-1
2 2	4
4 2	2
100 1	6
100 8	8

100 11

Sample Output

8	