Heavy Rain in Drainage Ditches

Description

Given a simple connected undirected weighted graph with N nodes and M edges. Output a $N \times N$ matrix $a_{N \times N}$, where $a_{i,j}$ is the minimum cut such that node i and node j are in different vertex set. If i = j, then we define $a_{i,j}$

Input

For each case, the first line contains two space-separated integers, N and M.

Each of the following M lines contains three integers, S_i , E_i , and C_i . It means that there's an edge that connects S_i and E_i and with weight C_i .

- $2 \le N \le 150$ $N-1 \le M \le \frac{N(N-1)}{2}$
- $1 \le S_i, E_i \le N$ $1 \le C_i \le 10^6$

Output

Output N lines, and each line contains N integers. The j-th integer on the i-th line is $a_{i,j}$

Sample Input

Sample Output

5 6	0 13 6 12 16
1 3 4	13 0 6 12 13
3 5 2	6 6 0 6 6
2 4 5	12 12 6 0 12
1 4 7	16 13 6 12 0
2 5 8	
1 5 9	