Kill the Tree

Description

Given a tree with N vertices (vertices are numbered from 1 to N), where 1 is the root of the tree. The weight of the edges on the tree is 1.

Define d(u, v) as the distance between vertex u and v.

Define a point w on tree T a "critical point", if $c(w) = \sum_{v \in T} d(w, v)$ is minimum $\forall v \in T$.

Now, for all $i \in [1, N]$, you must print the "critical points" of the subtree rooted at vertex i.

Input

The first line of the input contains a integer N denotes the number of verteices of the tree.

Then, N-1 line follows, the i^{th} line contains two integers a_i, b_i , denotes the i^{th} edge on the tree.

- $1 \le N \le 2 \times 10^5$
- $1 \le a_i, b_i \le N$
- The input is a tree

Output

24

Output ${\cal N}$ lines.

On the i^{th} line, output the "critical points" of the subtree rooted at vertex i in assending order. Two integers in one line must be separated by exactly one space, and no trailing space is allowed.

4

Sample Input	Sample Output
4	2
1 2	2
2 3	3