

The 2011 ACM ASIA

Programming Contest
Dhaka Site

 Sponsored by IBM
Hosted by North South University

Dhaka, Bangladesh

19th November 2011
You get 17 Pages

10 Problems
&

300 Minutes

 2

Rules for ACM-ICPC 2011 Asia Regional Dhaka Site:

a) Solutions to problems submitted for judging are called runs. Each run is judged as accepted or
rejected by the judge, and the team is notified of the results. Submitted codes should not contain
team or University name and the file name should not have any white space.

b) Notification of accepted runs will NOT be suspended at the last one hour of the contest time to
keep the final results secret. Notification of rejected runs will also continue until the end of the
contest. But the teams will not be given any balloon and the public rank list will not be updated in
the last one hour.

c) A contestant may submit a clarification request to judges. If the judges agree that an ambiguity or
error exists, a clarification will be issued to all contestants.

d) Contestants are not to converse with anyone except members of their team and personnel
designated by the organizing committee while seated at the team desk. But they cannot even talk
with their team members when they are walking around the contest floor to have food or any
other purpose. Systems support staff may advise contestants on system-related problems such as
explaining system error messages.

e) While the contest is scheduled for a particular time length (five hours), the contest director has the
authority to alter the length of the contest in the event of unforeseen difficulties. Should the contest
duration be altered, every attempt will be made to notify contestants in a timely and uniform
manner.

f) A team may be disqualified by the Contest Director for any activity that jeopardizes the contest
such as dislodging extension cords, unauthorized modification of contest materials, distracting
behavior oe communicating with other teams. The external judges will report to the Judging
Director about distracting behavior of any team. The external judges can also recommend
penalizing a team with additional penalty minutes for their distracting behavior.

g) Nine, ten or eleven problems will be posed. So far as possible, problems will avoid dependence on
detailed knowledge of a particular applications area or particular contest language. Of these
problems at least two will be solvable by a first year computer science student, another one will be
solvable by a second year computer science student and rest will determine the winner.

h) Contestants will have foods available in their contest room during the contest. So they cannot
leave the contest room during the contest without permission from the external judges. The
contestants are not allowed to communicate with any contestant (Even contestants of his
own team) or coach while are outside the contest floor.

i) Team can bring up to 200 pages of printed materials with them but they can also bring three
additional books. But they are not allowed to bring calculators or any machine-readable devices like
CD, DVD, Pen-drive, IPOD, MP3/MP4 players, floppy disks etc.

j) With the help of the volunteers and external judges, the contestants can have printouts of their
codes for debugging purposes. Passing of printed codes to other teams is strictly prohibited.

k) The decision of the judges is final.

l) Teams should inform the volunteers if they don’t get reply from the judges within 10
minutes of submission. Volunteers will inform the External Judges and the external judge will
take further action. Teams should also notify the volunteers if they cannot log in into the
PC^2 system. This sort of complains will not be entertained after the contest.

m) If you want to assume that judge data is weaker than what is stated, then do it at your own
risk :).

 3

A Binary Matrix
Input: Standard Input

Output: Standard Output

You are given an M × N binary matrix. By M × N
matrix we mean a matrix having M rows and N
columns and by binary matrix we mean each of
the M × N elements is a binary value, either 0 or
1. In addition, this matrix wraps both in
horizontally and vertically. So ith row is adjacent
to (i + 1)th row for all 1 ≤ i < M and Mth row is
adjacent to 1st row. Similarly, ith column is
adjacent to (i + 1)th column for all 1 ≤ i < N and
Nth column is adjacent to 1st column. Obviously
row a is adjacent to row b implies that row b is
adjacent to row a, and same thing is true for
columns. Now, two cells of this matrix are
adjacent if they are in the same row and their
columns are adjacent, or they are in the same
column and their rows are adjacent. So for a 3 × 5
matrix, cell (2, 3) has 4 adjacent cells (1, 3), (2, 2), (2, 4), (3, 3) and cell (3, 5) has 4 adjacent cells (2,
5), (3, 4), (3, 1), (1, 5). Note that, by cell (i, j) we mean the cell of ith row and jth column.

You are only allowed to swap the values of any two adjacent cells of the matrix. Your task is to
transform the matrix in such a way so that, each of the rows has same number of 1s and each of the
columns has same number of 1s. If it is possible print “both” and also print the minimum number of
swaps required. If it is not possible try to make every row has equal number of 1s. If it is possible print
“row” and also print the minimum number of swaps required. If it is also not possible try to make
every column has equal number of 1s. If it is possible print “column” and also print the minimum
number of swaps required. If none of these possible you have to print “impossible”.

Input
The input starts with an integer T (T ≤ 10), number of test cases.

Each case starts with two integers M and N (2 ≤ M, N ≤ 1000), number of rows and columns of the
matrix. Next M lines denotes M rows of the matrix. jth character of the ith line denotes the value of
cell (i, j) of the matrix.

Output
For each case, output a single line. If task is impossible to complete, output “Case #:
impossible” otherwise print “Case #: solution_type min_swap” without quotes, here
will be replaced by the case number, solution_type will be replaced by the type of solution found as
described above it will be one of these three “both”, “row”, “column” without quotes and min_swap
will be replaced by the minimum number of swaps required to complete the task. Please note that
value of min_swap can be zero.

See the sample input and output for exact format.

 4

Warning: Input file is large, so use fast input/output, for example instead of using cin/cout use
scanf/printf.

Sample Input Output for Sample Input
2
2 3
001
111
3 3
001
011
000

Case 1: row 1
Case 2: both 2

Explanation of sample input and output:
Case 1
The initial matrix is:
001
111
If we swap values of cell (1, 1) and cell (2, 1), the matrix will become
101
011
Now each row has two 1s and we found the solution.
Case 2
The initial matrix is:
001
011
000
If we swap the values of cell (2, 1) and cell (2, 3) (Considering the matrix wraps), the matrix will
become
001
110
000
If we swap the values of cell (2, 1) and cell (3, 1), the matrix will become.
001
010
100
Now each row has one 1 and each column has one 1 and we got our solution.

 5

B Candles
Input: Standard Input

Output: Standard Output

It is the 68th birthday of Animesh’s
father, so he is in “Archies’s Gift
Shop” of Banani (A place in Dhaka)
to buy candles. He convinces his
dumb head that buying 68 candles
won’t be such a good idea. But in the
shop he finds some digit shaped
candles and realizes that if he buys
only two candles (One ‘6’ and
another ‘8’) he can display his
father’s age on the cake. But now he
wants to buy digit shaped candles so
that he can display ages of all the
members of his family during their
birthdays. Minimum how many
candles does he need to buy? He has
to obey the following restrictions:

1. There are only 10 pieces of
candles in the store. 10 candles have
the shape of 10 decimal digits as
shown in figure 1. Therefore he can
buy at most one candle of each
shape. There is another candle at
Animesh’s home which has the
shape of ‘+’. So he does not need to
buy that one. He can buy all ten
digit shaped candles, but he wants to
buy minimum number of candles, as
for him these candles are not cheap.

2. He can only use the digit shaped
candles to display an age, but also he
can use the ‘+’ shaped candle he
already owns to display the age as
sum of two numbers. For example if
someone is 12 years old, he can
display his age as 2+10, 3+9, 4+8,
5+7, 7+5, 8+4, 9+3, 10+2 or 12.

Figure 1: Digit-shaped candles

Figure 2: A cake with two candles denoting silver jubilee

 6

Input
The input file contains less than 10000 line of input. Each line starts with an integer n (101 ≤≤ n)
which denotes total no of members in Animesh’s family. This integer is followed by n integers, all of
which are within the range 1 and 100 (inclusive). These integers denote the ages of the members of
Animesh’s family on their very next birthday. A line containing a single zero terminates input. This
line should not be processed.

Output
For each line of input produce one line of output. This line contains the serial of output followed by
some digits, which actually denotes the candles that Animesh must buy so that he can display the age
of all his family members on their birthday. These digits are printed in descending order. These digits
forms a number, lets call this number T. You can assume that their birthdays are in different dates so
same candle can be used in more than one birthday. If there is more than one way to buy minimum
number of candles, try to minimize the value of T. Look at the output for sample input for details. You
can assume that there will always be a solution.

Sample Input Output for Sample Input
2 10 11
1 30
0

Case 1: 654
Case 2: 30

 7

C Cards
Input: Standard Input

Output: Standard Output

Taha has got a standard deck of cards with him. In addition
to the 52 regular ones, there are 2 joker cards. Every regular
card has a rank and a suit. The ranks in ascending order are:
A, 2, 3, 4, 5, 6, 7, 8, 9, T, J, Q and K. The suit of a card can
be clubs, diamonds, hearts or spades. That means there are
13 clubs, 13 diamonds, 13 hearts and 13 spades - which adds
up to 52. The joker cards have no ranks or suits.

One day, Sara gave Taha a challenge. First she randomly shuffles the 54 cards and starts placing one
card after another, face-up, on a table. What is the expected number of cards Sara has to place so that
there are at least C clubs, D diamonds, H hearts and S spades on the table? Whenever a joker card is
encountered, Taha has to assign it to some suit so that the expected number of cards to reach the goal
is minimized. The decision of assigning the joker card to some suit has to be made instantly (i.e.
before Sara puts the next card on the table). Note that the assignments of the two joker cards don’t
necessarily need to be the same.

Input
First line of input is an integer T(T<50) that indicates the number of test cases. Each case consists of a
line containing 4 integers in the order C, D, H and S. Each of these integers will be in the range [0,
15].

Output
For each case, output the case number first. Then output the expected number of cards Sara needs to
place on the table to achieve the goal (rounded to 3 decimal places). If it’s impossible to reach the
goal, irrespective of what assignments Sara opts for, output “-1.000” (without the quotes) instead.
Look at samples for exact format. Judge inputs are such that small precision errors won’t cause error
in the output. If the output is “0.000”, make sure that you don’t print it as “–0.000” (without the
quotes).

Sample Input Output for Sample Input
4
0 0 0 0
15 13 13 13
1 2 3 4
15 15 15 15

Case 1: 0.000
Case 2: 54.000
Case 3: 16.393
Case 4: -1.000

Illustration of the Samples:
1) There is no need to place any card as all required values are 0
2) We must place all the 54 cards to reach the goal
3) Note that output isn’t always an integer
4) 60 Cards? No way!!

 8

D Game of Connect
Input: Standard Input

Output: Standard Output

In the Game of connect two players are given a graph with n vertices and m edges. Before starting the
game the first player selects two distinct vertices A and B. The goal of the second player is to connect
A and B with a sequence of colored edges. Initially all the edges are uncolored. In his move first
player can select an uncolored edge and deletes it from the graph. In his move second player can select
an uncolored edge and colors it. If second player can connect A and B with a sequence of colored
edges then he wins. Otherwise the first player wins. Players take their move by turns and the first
player always goes first. Given a graph you need to determine whether second player has a winning
strategy or not. Assume that both of the players play perfectly.

Input
First line of the input contains T (T ≤ 100) the number of test cases. Each test case starts with a line
containing n (2 ≤ n ≤ 100) and m (1 ≤ m ≤ 300). Each of the next m lines contains two integers u and
v denoting an edge between u and v. The vertices are numbered from 0 to n-1. There will not be any
duplicate edge.

Output
For each test case produce one line of output. This line contains the serial of output followed by a
string “YES” if the second player has a winning strategy and “NO” otherwise (without the quotes).
Look at the output for sample input for details.

Sample Input Output for Sample Input
2
4 6
0 1
0 2
0 3
1 2
1 3
2 3
4 4
0 1
1 2
2 3
3 0

Case 1: YES
Case 2: NO

 9

E Guards
Input: Standard Input

Output: Standard Output

This ICPC will take place in a huge hall room which can be divided in to N x N square cells. That's
why some volunteers will guard this room. But each row (or column) should be guarded by exactly
two volunteers. And in a single cell at most one volunteer can be placed. Now volunteers can watch
other volunteers either vertically or horizontally. Thus the volunteers form different groups. To be
more specific, in a single group all the volunteers can look after each other directly or indirectly.

Fig 1 Fig 2

Suppose we have a hall room that can be divided into 6 x 6 square cells. Circles represent volunteers;
lines represent the connectivity of the groups. In Fig 1, there is only one group (check the solid lines
carefully). In Fig 2, there are two groups, one group is shown using solid lines, and another one is
shown using dotted lines. Now the organizers wanted to know the number of ways they can place
volunteers in the hall room such that they form exactly K groups. Two configurations will be different
if in one configuration there is a volunteer on a cell but the cell is empty in another one. So, the
organizers are seeking your help as you are one of the best programmers in town.

Input
Input starts with an integer T (≤ 50000), denoting the number of test cases.

Each case starts with a line containing two integers: N and K (2 ≤ N ≤ 105, 1 ≤ K ≤ min(N, 50)).

Output
For each case, print the case number and the number of ways the volunteers can be placed in the hall
room as guards. The result can be large, so print the result modulo 1000 000 007.

Sample Input Output for Sample Input
4
2 1
3 1
4 1
4 2

Case 1: 1
Case 2: 6
Case 3: 72
Case 4: 18

 10

F Packing for Holiday
Input: Standard Input

Output: Standard Output

Mr. Bean used to have a lot of problems packing
his suitcase for holiday. So he is very careful for
this coming holiday. He is more serious this time
because he is going to meet his fiancée and he is
also keeping frequent communication with you as
a programmer friend to have suggestions. He gets
confused when he buys a gift box for his fiancée
because he can't decide whether it will fit in his
suitcase or not. Sometimes a box doesn't fit in his
suitcase in one orientation and after rotating the
box to a different orientation it fits in the suitcase.
This type of behavior makes him puzzled.

So to make things much simpler he bought another suitcase having same length, width and height,
which is 20 inches. This measurement is taken from inside of the box. So a box which has length,
width and height of 20 inches will just fit in this suitcase. He also decided to buy only rectangular
shaped boxes and keep a measuring tape in his pocket. Whenever he chooses one gift box, which must
be rectangular shaped, he quickly measures the length, width and height of the box. But still he can't
decide whether it will fit in his suitcase or not. Now he needs your help. Please write a program for
him which calculates whether a rectangular box fits in his suitcase or not provided the length, width
and height of the box. Note that, sides of the box must be parallel to the sides of the suitcase.

Input
Input starts with an integer T (T ≤ 100), which indicates the number of test cases.

Each of the next T line contains three integers L, W and H (1 ≤ L, W, H ≤ 50) denoting the
length, width and height of a rectangular shaped box.

Output
For each test case, output a single line. If the box fits in the suitcase in any orientation having the sides
of the box is parallel to the sides of the suitcase, this line will be “Case #: good”, otherwise it
will be “Case #: bad”. In your output # will be replaced by the case number.

Please see the sample input and sample output for exact format.

Sample Input Output for Sample Input
2
20 20 20
1 2 21

Case 1: good
Case 2: bad

 11

G Pair of Touching Circle
Input: Standard Input

Output: Standard Output

Given a rectangular grid of height H and width W. A problem setter wants to draw a pair of circles
inside the rectangle so that they touch each other but do not share common area and both the circles
are completely inside the rectangle. As the problem setter does not like precision he also wants their
centers on integer coordinates and their radii to be positive integers as well. How many different ways
can he draw such pair of circles? Two drawings are different from each other if any of the circles has
different center location or radius.

Input
The first line of input contains the number of test cases T (T ≤ 500). Each of the next T lines will
contain two integers H and W (0 < H, W ≤ 1000).

Output
For each line of input output the case number and the number of ways of drawing such pairs of circles
maintaining the mentioned constraints. See sample output for exact formatting. The output will fit into
64-bit signed integer.

Sample Input Output for Sample Input
5
4 2
4 3
4 4
4 6
10 10

Case 1: 1
Case 2: 2
Case 3: 6
Case 4: 16
Case 5: 496

Illustration of case 3:

 12

H Treasure Hunt
Input: Standard Input

Output: Standard Output

You have to help a group courageous
people to find the lost treasure of your
country, like the movie "National
Treasure - Book of Secrets." To
discover the national treasure that
courageous group has to pass through
many traps, solve many riddles and so
on.

Like the film there are four people in
the group and to reach the treasure they
have to jump on a plate that is placed
on a pillar with sharp edge at the top.
Before any of them jumps on the plate,
it is in a stable position. For simplicity
you can assume that the plate is
rectangular in shape, has equal
thickness at all places, it is solid and
made of same material. Four people of
equal weight jump on the plate at the

same time but they can jump only at
some certain points of the plate. So
they cannot always jump in such a
way that the plate is stable after they
jump on it. Therefore after jumping
on the plate they must run and
change their position to make the
plate stable again. Given the shape of
the plate (always rectangular) and
location of the four people just after
jumping on it, your job is to find the
minimum distance they have to cover
in total to make the plate stable
again. After jumping the four people
can run towards any direction. You
don’t need to print the minimum
distance, but you need to print the
final position of the four people after
covering the minimum distance in
total.

After jumping on the rectangular plate the four people can run
at any direction they want.

 13

Input
The input file contains around 15000 sets of inputs. Each set is described with 16 floating-point
numbers scattered in two lines. The first line contains eight floating-point numbers x1, y1, x2, y2, x3, y3,
x4 and y4 (-10 ≤ x1, y1, x2, y2, x3, y3, x4, y4 ≤ 1010) that denotes the coordinates of the four people just
after jumping on the plate. So the coordinate of the four people are (x1, y1), (x2, y2), (x3, y3) and (x4, y4)
respectively. The second line contains another eight floating-point numbers x5, y5, x6, y6, x7, y7, x8, y8
(-10 ≤ x5, y5, x6, y6, x7, y7, x4 ≤ 1010). These eight floating-point numbers actually denote the
coordinates of the four corners of the plate in counter clockwise order. The shape of the plate is always
rectangular. You can assume that the jumping locations (x1, y1), (x2, y2), (x3, y3) and (x4, y4) are
strictly within the plate boundary and all four people have equal weight. Input is terminated by two
lines, each containing eight zeroes. All floating-point numbers in the input has twelve digits after the
decimal point. The coordinates are all in two dimensions so they actually are given to specify the size
and orientation of the plate and the location of the people with respect to the plate. So if a person
stands still on the plate and the plate moves up and down or rotates, the coordinates of the person or
coordinate of four corners of the plate does not change. In the sample input it is shown that each line
contains four floating-point numbers. But it is only for lack of horizontal space on paper. In the judge
input file there are eight floating-point numbers in each line.

Output
For each set of input produce four lines of output. Each line contains two floating-point numbers that
denote the final position of one of the four persons. The final position of the four persons should be
mentioned according to the same order given in the input and should make the plate stable. Also the
final position of all four persons must be inside (or on the boundary of) the plate as well and ensure
that the total movement made by the four persons is minimum. If there is more than one solution, any
one will do. All floating-point numbers in the output should contain 12 digits after the decimal point.
Print a blank line after output for each set. There is an special judge for this program, so small
precision error will be ignored.

Warning: Input file is large, so use fast input/output, for example instead of using cin/cout use
scanf/printf.

Sample Input
731.637000000000 437.595000000000 296.162000000000 402.836000000000
493.625000000000 260.917000000000 526.376000000000 237.611000000000
631.933553096878 841.348627667446 158.076619219714 651.913864882162
360.066446903122 146.651372332554 833.923380780286 336.086135117837
0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.000000000000 0.000000000000 0.000000000000 0.000000000000

Output for Sample Input
715.687000000000 596.855250000000
280.212000000000 562.096250000000
477.675000000000 420.177250000000
510.426000000000 396.871250000000

 14

I Truchet Tiling
Input: Standard Input

Output: Standard Output

In 1704 French mathematician Sebastien Truchet proposed a tiling system that started with simple
motifs and used it's rotations and random placement to create quite interesting tiling patterns. In this
problem we will calculate the area enclosed by the curves in a special case of his tiling system.

Observe the two motifs here. Motif 0 is a square of length 2 units on each side. There are two circles
with radius 1 unit drawn at two opposite corners of the square. Motif 1 is just a 90 degrees rotation of
the first one (or you can think of it as drawing the circles on the other two corners).

Using just two basic motifs as shown here, we can tile an area to create rather interesting artistic
patterns. They do not have to be symmetrically placed – we can lay out these motifs randomly to cover
an area. If we then use a tool like paint bucket (found in most paint programs) at a particular point in
the pattern, we can color a contiguous region with one color.
 In this problem you'll be given a description of such a tiling pattern and then be asked how
much area would it color if we use paint bucket starting at specific points.

Here is one illustration:

We have the motifs randomly placed on a
9x9 grid. Then we used a black color at
position (2, 4) (Here 2 denotes the distance
from the top and 4 denotes the distance from
left). It colored all the contiguous region it
found bounded by the grid's boundary and
the curves themselves. We could achieve the
same effect if we used the color at position
(4, 6), (0, 6), (1, 7) etc. However, using the
paint bucket on the perimeter of the curves
(such as (3, 4)) will only color the perimeter
line of the curves. They will not fill up a
region with any color.

Input
The first line of the input starts with the
number of test cases T (1 ≤ T ≤ 100). In the
next T lines you get the description of T test
cases. For each test case the first line of the

 15

test case gives the dimension of the area in rows and columns format. You can assume that rows R and
columns C are at most 100 units long (0 < R, C ≤ 100). For each of the next R lines you'll have the
row description given in binary form. The basic motifs are numbered 0 and 1. For example, the
accompanying picture's first row can be described as “0001”. After the R row descriptions you'll be
given Q (1 ≤ Q ≤ 100) – the number of queries. Each query will be of the form x (0 ≤ x ≤ 2R) and y (0
≤ y ≤ 2C) where x and y are integers denoting the row and column number where you will use the
paint bucket tool.

Output
For each test case print the test case number as “Case C:” in one line where C is the test case number.
That line will be followed by Q lines of output for the queries on that test case. For each query print
one number giving the area enclosed by the boundary and the curves that contain that point. If the
point in question itself lies on a curve, you can assume the enclosed area to be zero. Your answer for
each query must be rounded to 4 (four) digits after the decimal point. If the output is 0 (zero) make
sure that you don’t print it as “-0.0000”. Other than that inputs will be such that small precision error
will not cause difference in output.

Sample Input Output for Sample Input
3
1 2
01
4
0 0
2 0
0 1
0 2
2 2
01
00
1
2 2
3 1
1
0
1
2
3 1
4 2

Case 1:
0.7854
4.8584
0.0000
4.8584
Case 2:
4.7854
Case 3:
7.2876
1.5708

 16

J As Long as I Learn, I Live
Input: Standard Input

Output: Standard Output

What makes problem solving so interesting? What makes it challenging? Why we put so much effort
on it but never get bored? For us (problem-setters), it's like 'As long as I learn, I live!' We learn so
many beautiful things, we find great ideas and techniques and there is no end to it.

In this problem, you are given a person's life stages in graph form. There are n nodes in the graph.
Nodes represent stages, numbered from 0 to n-1, and edges represents that he can move from one
stage to another. 0th node is the node where he starts his journey. You may have guessed; there will be
no cycles in the graph (no one can back to past!).

In each node, a value x is attached, it means he will learn x units, if he comes into this node. For
example, the graph in the picture represents a person's life stages. The circles present nodes, the value
in a circle represents that it will be gained if the person comes into this node. The numbers in
rectangular boxes represents the node ids. If the person reaches the 1st node he will learn 8 added units,
if he reaches 4th node, he will learn 7 added units.

As in real life, no one knows the future, but can predict some common things in near future. If the
person is in node u, he only knows the nodes that have an edge from u. The person wants to learn
more, that's why, he always takes the stage that looks better, i.e. has maximum value. So, if he is in
node 0, he only knows the learning units in node 1 and 2, but doesn't know about nodes 3, 4, or 5. He
will prefer node 2 over node 1 (because node 2 will give him 9 learning units). He continues journey
in this method. He can finish at any stage, but will try to learn more. You can assume that the graph is
given such that from any node, the next node can be picked deterministically i.e. from any node u,
there will be exactly one node v which has the maximum value and there is an edge from u to v.

Input
Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a blank line. Next line contains two integers n (2 ≤ n ≤ 100) and m (n-1 ≤ m ≤
n*(n-1)/2), n denotes the number of nodes in the graph and m denotes the number of edges in the
graph. The next line contains n space separated integers denoting the learning units in the nodes
respectively. The values will be between 1 and 1000 (inclusive) except the 0th node will have a value
0. Each of the next m lines contains two integers u v (0 ≤ u, v < n, u ≠ v) meaning that there is a
directed edge from u to v. You can safely assume that the given graph will follow the restrictions
described above. And from 0th node, it can be possible to go to any node. There will be at most one
edge between any pair of nodes.

0 1

2

5

4 3

9

0 8 5

7 2

 17

Output
For each case, print the case number and the maximum total learning units the person can gain
(following the strategy mentioned above) and the node id where the person ends journey.

Sample Input Output for Sample Input
1

6 6
0 8 9 2 7 5
5 4
5 3
1 5
0 1
0 2
2 1

Case 1: 29 4

