TopCoder

User's AC Ratio

NaN% (0/0)

Submission's AC Ratio

NaN% (0/0)

Tags

Description

Castaway Robinson Crusoe is living alone on a remote island. One day a ship carrying a royal
library has wrecked nearby. Usually Robinson brings any useful stuff from the shipwreck to his
island, and this time he has brought a big chest with books.
Robinson has decided to build a bookcase for these books to create his own library. He cut a
rectangular niche in the rock for that purpose, hammered in wooden pegs, and placed wooden
planks on every pair of pegs that have the same height, so that all planks are situated horizontally
and suit to act as shelves.







Unfortunately, Robinson has discovered that one especially old and big tome does not fit in
his bookcase. He measured the height and width of this tome and has decided to redesign his
bookcase in such a way, as to completely fit the tome on one of the shelves, taking into account
locations of other shelves and the dimensions of the niche. With each shelf in the bookcase, one
of the following operations should be made:



1. Leave the shelf on its original place.

2. Move the shelf to the left or to the right.

3. Shorten the shelf by cutting off a part of the plank and optionally move it to the left or
to the right.

4. Move one of the pegs to a different place at the same height and move the shelf to the left
or to the right.

5. Shorten the shelf by cutting off a part of the plank, move one of the pegs to a different
place at the same height, and optionally move the shortened shelf to the left or to the
right.

6. Remove the shelf from the bookcase along with both supporting pegs.



We say that the shelf is properly supported by its pegs, if exactly two distinct pegs support the
shelf and the center of the shelf is between its pegs or coincides with one of the pegs. The original
design of Robinson’s library has all the shelves properly supported by their pegs and lengths of
all shelves are integer number of inches. The Robinson may move and/or cut off planks only
by an integer number of inches, because he has no tools for more precise measurements. All
remaining shelves after the redesign must be properly supported by their pegs.



You are to find the way to redesign Robinson’s library to fit the special old tome without
changing original design too much. You have to minimize the number of pegs that are to be
removed from their original places during the redesign (operations 4 and 5 remove one peg, and
operation 6 removes two pegs). If there are different ways to solve the problem, then you are to
find the one that minimizes the total length of planks that are to be cut off (operations 3 and
5 involve cutting something from the planks, and operation 6 counts as if cutting off the whole
plank). Width of planks and diameter of pegs shall be considered zero.



The tome may not be rotated. The tome should completely (to all its width) stand on one of
the shelves and may only touch other shelves, their pegs or niche’s edge.

Input Format

The first line of the input file contains an integer number that represents the number of test
cases. Then test cases follow. They are separated by a blank line.



The first line of each test case contains four integer numbers XN, YN, XT, and YT, separated
by spaces. They are, correspondingly, width and height of the niche, and width and height of
the old tome in inches (1 ≤ XN, YN, XT, YT ≤ 1000).
The next line contains a single integer number N (1 ≤ N ≤ 100) that represents the number of
the shelves. Then N lines follow. Each line represents a single shelf along with its two supporting
pegs, and contains five integer numbers yi, xi, li, x1i, x2i, separated by spaces, where:



• yi (0 < yi < YN) is the height of the ith shelf above the bottom of the niche in inches,

• xi (0 ≤ xi < XN) is the distance between the left end of the ith shelf and the left edge of
the niche in inches,

• li (0 < li ≤ XN − xi) is the length of the ith shelf in inches,

• x1i (0 ≤ x1i ≤ li/2) is the distance between the left end of the ith shelf and its leftmost

supporting peg in inches, and

• x2i (li/2 ≤ x2i ≤ li; x1i < x2i) is the distance between the left end of the ith shelf and its
rightmost supporting peg in inches.



All shelves are situated on different heights and are properly supported by their pegs. The
problem is guaranteed to have a solution for the input data.

Output Format

For each case, print a line containing two integer numbers separated by a space. The first one
is the minimal number of pegs that are to be removed by Robinson from their original locations
to place the tome. The second one is the minimal total length of planks in inches that are to be
cut off during the redesign that removes the least number of pegs.

Sample Input 1

2

11 8 3 4
4
1 1 7 1 4
4 3 7 1 6
7 2 6 3 4
2 0 3 0 3

11 8 4 6
4
1 1 7 1 4
4 3 7 1 6
7 2 6 3 4
2 0 3 0 3

Sample Output 1

0 0
1 3

Hints

Problem Source

Migrated from old NTUJ.

Subtasks

No. Testdata Range Score

Testdata and Limits

No. Time Limit (ms) Memory Limit (VSS, KiB) Output Limit (KiB) Subtasks
0 10000 65536 200