A polynomial p(x) of degree n can be used to approximate a function f(x) by setting the coefficients of p(x) to match the first n coefficients of the power series of f(x) (expanded about x = 0). For example,
Background Definitions
A polynomial p(x) of degree n can be written as p0 + p1x + p2x2 + ... + pnxn, where pi's are integers in this problem.
A power series expansion of f(x) about 0 can be written as f0 +f1x+f2x2+... , where fi's are integers in this problem.
The input will consist of multiple cases. Each case will be specified on one line, in the form m n f0 f1 ... fm+n-1where fi is the coefficient of xi in the power series expansion of f. You may assume that
1 <= m, 1 <= n <= 4, 2 <= m + n <= 10, and fi are integers such that |fi| <= 5. The end of input will be indicated by a line containing m = n = 0, and no coefficients for f. You may assume that there is a unique solution for the given input.
For each test case, print two lines of output. Print the polynomial p(x) on the first line, and then q(x) on the second line. The polynomial p(x) should be printed as a list of pairs (pi, i) arranged in ascending order in i, such that pi is a non-zero coecient for the term xi. Each non-zero coecient pi should be printed as a/b, where b > 0 and a/b is the coecient expressed in lowest terms. In addition, if b = 1 then print only a (and omit b). If p(x) = 0, print a line containing only (0,0). Separate the pairs in the list by one space. The polynomial q(x) should be printed in the same manner. Insert a blank line between cases.
2 2 0 0 1 1 4 2 1 2 3 4 5 -2 1 1 2 3 1 4 -5 0 -2 1 -2 0 0
(0,0) (1,1) (-4/33,0) (-1/11,1) (-2/33,2) (-1/33,3) (-4/33,0) (5/33,1) (2/3,0) (1/3,0) (25/6,0) (-5/6,0) (1/3,2) (-1/6,3)
Migrated from old NTUJ.
No. | Testdata Range | Score |
---|