Given a prime $P$ and integer sequences $a_ 0, a_ 1, ..., a_ {P - 1}$ and $b_ 0, b_ 1, ..., b_ {P - 1}$. Calculate an integer sequence $c_ 0, c_ 1, ..., c_ {P - 1}$ as follows:
$$c_ k = \sum_ {i \times j \equiv k \pmod{P}} a_ i b_ j \bmod 998244353$$
$P$
$a_ 0$ $a_ 1$ ... $a_ {P - 1}$
$b_ 0$ $b_ 1$ ... $b_ {P - 1}$
$c_ 0$ $c_ 1$ ... $c_ {P - 1}$
5 9 7 5 3 1 8 6 4 2 0
308 64 60 36 32
2 0 998244352 0 998244352
0 1
| No. | Testdata Range | Score |
|---|