E. Gacha 101 Problem ID: E

For each i = 1, 2, ..., N, there are A_i balls with *i* written on them. These are put into a box and mixed up. The string variable *s* consists of initially N "0"s. Balls are taken out of the box one by one (uniformly at random and independently). When a ball with *i* written on it is drawn, the *i*-th character of *s* is changed to "1" (it remains unchanged if it was already "1"). Find the probability, modulo 998, 244, 353, of having a point during this process that s contains "101" as a contiguous substring.

Input

The input consists of a single test case of the following format.

 $\begin{array}{c} N\\ A_1 \ A_2 \ \dots \ A_N \end{array}$

The first line consists of an integer N. The second line consists of N positive integers A_1, A_2, \ldots, A_N . For each *i*, A_i represents the number of balls *i* written.

- $1 \le N \le 2 \times 10^5$
- $\sum_{1 \le i \le N} A_i < 998, 244, 353$

Output

Output in a line the probability modulo 998, 244, 353.

Note

- How to find the probability modulo 998, 244, 353
 - It can be proved that the sought probability is always a rational number. Additionally, the constraints of this problem guarantee that if the sought probability is represented as an irreducible fraction $\frac{y}{x}$, then x is not divisible by 998, 244, 353. Here, there is a unique $0 \le z < 998, 244, 353$ such that $y \equiv xz \pmod{998, 244, 353}$, so report this z.

National	Taiwan	University	
----------	--------	------------	--

Sample Input 1	Sample Output 1
3	465847365
1 2 3	

Sample Input 2	Sample Output 2
10	488186016
3 1 4 1 5 9 2 6 5 3	