K. Odd trip plans Problem ID: K

NTU is a country with n airports numbered through 1 to n. There are some airways, each of which connects two different airports bidirectionally. In other words, if an airway connects airports u and v, a passenger can move either from u to v or from v to u in a single flight. Airways may be newly established or abolished.

Mr. Oddytrip, who is a traveler loving odd numbers, plans a trip from an airport to another one by flights. Let's say that he boards k flights: A flight from airport p_1 to p_2 , then from p_2 to p_3 , then from p_3 to p_4 , and so on, and finally from p_k to p_{k+1} . This trip plan, which begins with p_1 and ends with p_{k+1} , is written as $p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow p_4 \rightarrow \cdots \rightarrow p_k \rightarrow p_{k+1}$. According to his aesthetics, a trip plan is *beautiful* if each of n airports appear an odd number of times in the trip plan. For example, if n = 6, trip plans $3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 1 \rightarrow 2$ and $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 6$ are beautiful while $1 \rightarrow 3 \rightarrow 6$ and $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 5 \rightarrow 6$ aren't. In particular, each of the n airports appears at least one in a beautiful trip plan.

Initially, there are m airways. Then, you are given q queries, which should be processed in the order they are given. Each query is of one of the two kinds below:

- 1 x y: The existence of the airway between airports x and y changes. If there is already an airway between airports x and y, then such an airway is abolished. In other words, Mr. Oddytrip is no longer able to board the direct flight between airports x and y (until it is newly established again). On the other hand, if there wasn't such an airway before, an airway between airports x and y is newly established. In other words, Mr. Oddytrip can board a direct flight between airports x and y (until it is abolished again).
- 2 x y: You have to determine whether there can be a beautiful trip plan which begins with airport x and ends with airport y using the airways which are available at that time.

Input

The input consists of a single test case of the following format.

n m q u_1v_1 \vdots $u_m v_m$ $t_1 x_1 y_1$ \vdots $t_q x_q y_q$

The first line consists of three integers n, m and q, where n is the number of airports in NTU country, m is the number of airways which are initially available, and q is the number of queries.

The *i*-th of the following m lines consists two integers u_i and v_i representing that an airway between airports u_i and v_i is initially available.

The *j*-th of the following q lines consists of three integers t_j, x_j and y_j representing the type of the query and the numbers of two airports as described above.

- $2 \le n, m, q \le 10^5$
- $1 \le u_i < v_i \le n$
- It is guaranteed that all m airways are distinct
- $1 \le t_j \le 2$
- $1 \le x_j < y_j \le n$
- It is guaranteed that there is at least one query where $t_j = 2$

Output

For each query where $t_j = 2$, print "Yes" in a single line if there can be a beautiful trip plan which begins with airport x and ends with airport y. Otherwise, print "No" in a single line. National Taiwan University

Sample Input 1	Sample Output 1	
4 2 6	No	
1 2	Yes	
3 4	Yes	
2 1 2		
1 2 3		
2 1 2		
1 2 4		
1 2 3		
2 1 3		

Sample Input 2	Sample Output 2
5 5 4	Yes
1 2	No
2 3	Yes
3 4	
1 4	
4 5	
2 1 3	
2 1 4	
1 2 4	
2 1 4	

This page is intentionally left blank.